MCAS MATH

Grade 10 Review Packet

Southwick Regional School
Mathematics Department

Rules of Integer Operations

Concept Summary for Solving Systems of Equations	
Method	Best Time to Use It
Graphing	To estimate solutions, since graphing usually does not give an exact solution
Substitution	If one of the variables in either equation has a coefficient of 1 or -1
Elimination Using Addition	If one of the variables has opposite coefficients in the two equations
Elimination Using Subtraction	If one of the variables has the same coefficient in the two equations
Elimination Using Multiplication	If none of the coefficients are 1 or -1 and neither of the variables can be eliminated by simply adding or subtracting the equations

Steps to solving Systems of Equations by Substitution:

$$
\begin{aligned}
& x+3 y=6 \\
& 2 x+8 y=-12
\end{aligned}
$$

1. Isolate a variable in one of the equations. (Either $\mathrm{y}=$ or $\mathrm{x}=$).

$$
\begin{aligned}
& x+3 y=6 \\
& x=6-3 y
\end{aligned}
$$

2. Substitute the isolated variable in the other equation.

$$
\begin{aligned}
& 2 x+8 y=-12 \\
& 2(6-3 y)+8 y=-12
\end{aligned}
$$

3. This will result in an equation with one variable. Solve the equation.

$$
\begin{aligned}
& 12-6 y+8 y=-12 \\
& 2 y=-24 \\
& y=-12
\end{aligned}
$$

4. Substitute the solution from step 3 into another equation to solve for the other variable.

$$
\begin{aligned}
& x+3(-12)=6 \\
& x=42
\end{aligned}
$$

5. Recommended: Check the solution.

$$
42=6-3(-12)
$$

$\begin{gathered} 6 x+5 y=4 \\ 6 x-7 y=-20 \end{gathered}$	Solve the system using Elimination
$\begin{gathered} -1(6 x+5 y)=-1(4) \\ -6 x-5 y=-4 \end{gathered}$	Multiply one equation by negative 1 to try to ELIMINATE one of the variables
$\begin{aligned} -6 x-5 y & =-4 \\ +6 x-7 y & =-20 \\ \hline-12 y & =-24 \end{aligned}$	Eliminate the y-variable by adding the two equations together
$\begin{gathered} \frac{-12}{-12}=\frac{-24}{-12} \\ y=2 \end{gathered}$	Divide by -12 to solve for x
$6 x+5(2)=4$	Plug the y-value into any previous equation to solve for x
$\begin{gathered} 6 x+10=4 \\ -10-10 \\ \hline \frac{6 x}{6}=-\frac{6}{6} \\ x=-1 \end{gathered}$	Solve for x by subtracting 10 and then dividing by 6
$(x, y)=(-1,2)$	Solution

Point-slope form of a line

Slope-Intercept form of a line

$y-y_{1}=m\left(x-x_{1}\right) \quad y=m x+b$

EX: Find the equation of the line that has slope $m=4$ and passes through the point $(-1,-6)$.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

$$
y-(-6)=(4)(x-(-1)) \quad \text { Plug in the values of the slope and point }
$$

$$
y+6=4(x+1) \quad \text { Simplify. This is now in point-slope form }
$$

$$
y+6=4 x+4 \quad \text { To put into } y=m x+b, \text { solve for } y
$$

$$
y=4 x+4-6
$$

$$
y=4 x-2
$$

Same equation in slope-intercept form
The Midpoint formula : $\quad M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

When given 2 points, add the x -coordinates and divide by 2 , and add the y -coordinates and divide by 2 . This gives you the coordinates of the midpoint of the segment that is between the given points.

EX: $\quad R$ is the midpoint between $Q(-9,-1)$ and $T(-3,7)$. Find its coordinates.
$R=\left(\frac{-9+-3}{2}, \frac{-1+7}{2}\right)$
$R=\left(\frac{-12}{2}, \frac{6}{2}\right)$
$R=(-6,3)$

To find the distance between two points, use the distance formula. EX:

The Distance Formula

$$
D=\sqrt{\left(x_{1}, y_{1}\right)}\left(x_{2}, y_{2}\right)
$$

Find the distance between the two points.

$$
\begin{aligned}
&(-5,0),(-2,2) \\
& d=\sqrt{(-2+5)^{2}+(2-0)^{2}} \\
& d=\sqrt{(3)^{2}+(2)^{2}} \\
& d=\sqrt{9+4} \\
& d=\sqrt{13}
\end{aligned}
$$

Evaluate the expression:

$$
9 / 3+2(9+10)-8+4 \cdot 3
$$

$\frac{9 / 3}{\downarrow}+2(19)-8+4 \bullet 3 \quad$ Division (comes $1^{\text {st }}$)
$3+2(19)-8+4 \cdot 3 \quad$ Multiplication (comes $2^{\text {nd }}$)

$3+38-8+\frac{4 \bullet 3}{\square}$	Multiplication (comes 3 3rd
$\frac{3+38-8+12}{\square}$	Addition (comes $1^{\text {st }}$)
$\frac{41-8+12}{\frac{33+12}{\square}}$	Subtraction
45	Final Addition
	45 is the final answer.

Sequences

To find any term in an arithmetic sequence, use
$a_{n}=a_{1}+(n-1) d$
where a_{1} is the first term of the sequence, d is the common difference, n is the number of the term to find.

Find the $10^{\text {th }}$ term of the sequence $3,5,7,9, \ldots$	$3 . n=10 ; a_{1}=3, d=2$ *the common difference is 2 because when
$a_{n}=a_{1}+(n-1) d$ you subtract each number from the number ahead of it you get 2 every time.	10
$a_{10}=3+(10-1) 2$	
The tenth term is 21.	

To find any term in a geometric sequence, use

$$
a_{n}=a_{1}(r)^{n-1}
$$

where a_{n} is the $n^{\text {th }}$ term of the sequence (the term you are looking for), a_{1} is the first term, n is the number of the term you are finding, and r is the common ratio.

EX: What's the $23^{\text {rd }}$ term of this sequence? $\frac{1}{9},-\frac{1}{3}, 1,-3,9, \ldots$

Find the ratio:
$r=a_{2} \div a_{1}=-\frac{1}{3} \div \frac{1}{9}=-\frac{1}{3} \cdot \frac{9}{1}=-3$

So...

$$
\begin{aligned}
& a_{23}=\frac{1}{q}(-3)^{22} \\
&=-10,460,353,203 \\
& \text { Yikes! }
\end{aligned}
$$

By the way, these () are really important if your ratio is negative!
So, be careful!

Distributive Property

Multiply what's outside the () by everything inside the ()
EX:
$5(x+2)=5 \cdot x+5 \cdot 2$
*watch your signs $5(x-2)=5 \bullet x-5 \bullet 2$

Algebraic Properties

Commutative Property of Addition $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$	$2+3=3+2$
Commutative Property of Multiplication $\boldsymbol{a} \cdot \boldsymbol{b}=\boldsymbol{b} \cdot \boldsymbol{a}$	$2 \cdot(3)=3 \cdot(2)$
Associative Property of Addition $\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})=(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}$	$2+(3+4)=(2+3)+4$
Associative Property of Multiplication $\boldsymbol{a} \cdot(\boldsymbol{b} \cdot \boldsymbol{c})=(\boldsymbol{a} \cdot \boldsymbol{b}) \cdot \boldsymbol{c}$	$2 \cdot(3 \cdot 4)=(2 \cdot 3) \cdot 4$
Distributive Property $\boldsymbol{a} \cdot(\boldsymbol{b}+\boldsymbol{c})=\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c}$	$2 \cdot(3+4)=2 \cdot 3+2 \cdot 4$
Additive Identity Property $\boldsymbol{a}+\mathbf{0}=\boldsymbol{a}$	$3+0=3$
Multiplicative Identity Property $\boldsymbol{a} \cdot \mathbf{1}=\boldsymbol{a}$	$3 \cdot 1=3$
Additive Inverse Property $\boldsymbol{a}+(-\boldsymbol{a})=0$	$3+(-3)=0$
Multiplicative Inverse Property $\boldsymbol{a} \cdot\left(\frac{\mathbf{1}}{\boldsymbol{a}}\right)=\mathbf{1}$ Note: \boldsymbol{a} cannot $=0$	$\mathbf{3} \cdot\left(\frac{\mathbf{1}}{\mathbf{3}}\right)=\mathbf{1}$
Zero Property $\boldsymbol{a} \cdot 0=0$	$5 \cdot 0=0$

Proving Triangle Congruence

Two sides and the included angle (the one in between) of one triangle are congruent to the corresponding parts of the other triangle.

All three sides of one triangle are congruent to the corresponding three sides of the other triangle.

Two angles and the included side of one triangle are congruent to the corresponding parts of the other triangle.

Two angles and the non-included side (the one not in between) of one triangle are congruent to the corresponding parts of the other triangle.

Congruence by the hypotenuse-leg Theorem

HL Theorem

- To use the HL Theorem, you must show that three conditions are met.

1) There are two right triangles.
2) The triangles have congruent hypotenuses.
3) There is one pair of congruent legs.

Triangle Similarity

Similarity Shortcuts		
Postulate or Theorem	Explanation	Example
AA Postulate (Angle-Angle)	Two triangles are similar if they have two pairs of congruent angles.	
SSS Theorem (Side-Side-Side)	Two triangles are similar if they have three pairs of proportional sides.	
SAS Theorem (Side-Angle-Side)	Two triangles are similar if they have two pairs of proportional sides with a congruent included angle.	

Finding the x - and y-intercepts

The x-intercept of a line is the point at which the line crosses the x axis. (i.e. where the y value equals 0)
x-intercept $=(x, 0)$

The y-intercept of a line is the point at which the line crosses the y axis. (i.e. where the x value equals 0)
y-intercept $=(0, y)$

EX

Find the x and y intercepts of the equation $3 x+4 y=12$.

Solution

To find the x-intercept, set $y=0$ and solve for x.

$$
\begin{aligned}
& 3 x+4(0)=12 \\
& 3 x+0=12 \\
& 3 x=12 \\
& x=12 / 3 \\
& x=4
\end{aligned}
$$

To find the y-intercept, set $x=0$ and solve for y.

$$
\begin{aligned}
& 3(0)+4 y=12 \\
& 0+4 y=12 \\
& 4 y=12 \\
& y=12 / 4 \\
& y=3
\end{aligned}
$$

Therefore, the x-intercept is $(4,0)$ and the y-intercept is $(0,3)$.

Angles formed by parallel lines cut by a transversal

Central and Inscribed Angles

$$
m \angle A O C=m \widehat{A C}
$$

measure of $\operatorname{arc} \mathrm{AC}=80$

Inscribed angle ($\angle A B C$) is half the measure of its intercepted arc (Arc AC) and central angle ($\angle A O C$) is the same measure as its intercepted arc (also Arc AC).
*Total degree measure of a circle $=360^{\circ}$

Special Right Triangles

$45^{\circ}-45^{\circ}-90^{\circ}$ Triangle

$30^{\circ}-60^{\circ}-90^{\circ}$ Triangle

Applying Special Right Triangles

Find the values of the variables. Give your answers in simplest radical form.
1.

3.

4.

Pythagorean Theorem

Use the Pythagorean Theorem to find missing side lengths of a right triangle.

Examples:

$6^{2}+8^{2}=x^{2}$
$12^{2}+y^{2}=13^{2}$
$36+64=x^{2}$
$100=x^{2}$
$144+y^{2}=169$
$y^{2}=25$
$\sqrt{100}=\sqrt{x^{2}}$
$x=10$

Approximating Square Roots: Numbers that are not perfect squares do not have integer square roots. You can use perfect squares to approximate the square root of a number that is not a perfect square.

Step 1: Locate the closest perfect squares (one smaller, one bigger).
Step 2: Decide which is actually closer to the desired radicand.
Example: Estimate $\sqrt{52}$.
Since 52 is not a perfect square, we need to find two perfect squares that are close to 52 . They are:

49 and 64 because $\sqrt{49}<\sqrt{52}<\sqrt{64}$ or $7<\sqrt{52}<8$
So, $\sqrt{52}$ lies between 7 and 8 .
And since 52 is closer to 49 , we know that $\sqrt{52}$ is closer to 7 .

Making and reading box and whisker plots

To create a box-and-whisker plot, we start by ordering our data (that is, putting the values) in numerical order, if they aren't ordered already. Then we find the median of our data. The median divides the data into two halves. To divide the data into quarters, we then find the medians of these two halves.

A boxplot is a way to show a five number summary in a chart. The main part of the chart (the "box") shows where the middle portion of the data is: the interquartile range. At the ends of the box, you" find the first quartile (the 25% mark) and the third quartile (the 75% mark). The far left of the chart (at the end of the left "whisker") is the minimum (the smallest number in the set) and the far right is the maximum (the largest number in the set). Finally, the median is represented by a vertical bar in the center of the box.

$\begin{array}{llllllllll}50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95\end{array}$

VOCABULARY	DEFINITION	EXAMPLE
RANGE	The difference between the least and greatest values in the set of numbers.	$\begin{gathered} 2,5,3,6,9,8 \\ 9-2=7 \\ \text { Range }=7 \end{gathered}$
MEAN	The sum of all the items, divided by the number of items in the set. Also called the average.	$\begin{gathered} 2,4,3,6 \\ 2+4+3+6=15 \\ 15 \div 4=3.75 \\ \text { Mean }=3.75 \end{gathered}$
MEDIAN	The middle value when the data are in numerical order. If there are two numbers in the middle, find the mean (average) of those two numbers.	$\begin{gathered} 2,4,3,6,8,5 \\ 2,3,4,5,6,8 \\ 4+5=9 \\ 9 \div \mathbf{2}=4.5 \\ 4.5=\text { median } \\ \hline 2,4,3,6,8,5,7 \\ 2,3,4,5,6,7,8 \\ 5=\text { median } \end{gathered}$
MODE	The value or values that occurs most often in a set of data.	$\begin{gathered} 4,5,3,4,3,2,4,6 \\ 4=\text { mode } \end{gathered}$

Step-by-Step Method to Graph a Line when in Slope-Intercept Form

Slopes of perpendicular and parallel lines

- Perpendicular lines have opposite reciprocal slopes (their product is -1)
- Parallel lines have the same slope

Factoring Trinomials

Factor. $x^{2}+2 x-24$

Step 1: List all pairs of numbers that multiply to equal the constant, $\mathbf{- 2 4}$. (To get -24 , one number must be positive and one negative.)

$$
\begin{aligned}
-24 & =1 \cdot-24,-1 \cdot 24 \\
& =2 \cdot-12,-2 \cdot 12 \\
& =3 \cdot-8,-3 \cdot 8 \\
& =4 \cdot-6,-4 \cdot 6
\end{aligned}
$$

Step 2: Which pair adds up to 2?
Step 3: Write the binomial factors.

$$
x^{2}+2 x-24=(x-4)(x+6)
$$

when the leading coefficient is not 1:

$$
a x^{2}+b x+c
$$

If the trinomial has a leading co-efficient that is not just a GCF to be factored out, use a process called DECOMPOSITION

We need to find two numbers whose product is 10 and sum is 7 -5 and 2 .

Order of middle terms does not matter. Factor each half separately.
$2 x(x+1)+5(x+1)$ We now have a binomial with a common binomial factor.

$$
(x+1)(2 x+5)
$$

Factoring by Grouping $x^{3}+2 x^{2}+8 x+16$

 If you have 4 terms, the process $x^{2}(x+2)+8(x+2)$ above may still work. $(x+2)\left(x^{2}+8\right)$
Factor Using Grouping

Group pairs of terms that have common factors.

$$
\begin{gathered}
2 x y+7 x-2 y-7 \\
2 x y-2 y+7 x-7 \\
2 y(x-1)+7(x-1) \\
(2 y+7)(x-1)
\end{gathered}
$$

The terms must be rearranged in pairs that have a common factor.

What common factor do the first two terms have? $2 y$ What common factor do the second two terms have? 7

Use the distributive property to write the expression in factored form.

